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A discussion is presented of aspects of the description of heat- and mass-transfer 
processes in dispersed media on the basis of a single equation for the concentra- 
tion of the disperse phase (temperature) in the dispersion medium when there is a 
nonlinear relationship between the concentrations of the disperse phase and disper- 
sion medium at the interface. 

introduction. The development of a theory of heat and mass transfer in disperse systems 
has led to the gradual refinement of the basic equations of the process and the degree to 
which they reflect actual events. The key stages in the development of the theory have been 
the derivation of a single transport equation for the system as a whole [E = i in (i)], the 
creation of a two-phase system of the form 

eOc/Ot + uOc/Ox = DOZc/Ox 2 - -  (1 - -  8) Oa/rgt, 

(1 - -  e) Oa/Ot = f (c) - -  k a  
(i) 

( 2 )  

and later, in the linear variant, the return to one-phase equations which either simplify 
system (1-2) for f(c) = kc (equivalent to the equation in [i]) or account for reiaxationai 
heat and mass transfer between the phases [2, 3]. For the sake of definiteness, we will 
henceforth concern ourselves with mass transfer - where use is often made of nonlinear sys- 
tems of type (1-2). Since the dimensions of the problem with respect to the macroscopic 
space coordinates in the dispersion medium are not of central importance for the purposes of 
our analysis, we will consider it to be unidimensionai in order to simplify the notation. 

We will discuss how system (1-2) can be replaced by one equivalent equation and how the 
results obtained [2, 3] can be generalized to nonlinear situations for sufficiently arbitrary 
forms of disperse-phase particles and certain distributions of the characteristics of these 
forms. 

i. Equivalent Equation. The usefulness of this approach for analyzing problems in dis- 
perse systems has been discussed in several studies [i, 4, 5, etc.]. Thus, we will restrict 
ourselves to the observation that the equivalent equation can be used to describe processes 
which are large-scale in terms of time and that, as far as the physical accuracy of the model 
is concerned, it often proves to be sufficient to restrict the inquiry to one term in the 
sum which enters into the equivalent equation [i]. 

Following [i], we use (2) to express the quantity a through the formal expansion: 

a = -  ( - - b  ~ - -  , _ .  
k k 8 t  ~ t J ) 

lZ~O 

The inserting (3) into (i), we obtain the equivalent equation 

8--ac _~ ( 1 - , ) _ _ O f ( c )  + u  ac = 
Ot k 8t Ox 

OxZ + ( - - 1 )  n --~ 
~=2 k Ot ~ 

(4) 
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if we discard all terms of the sum in (4), we obtain an equation which is frequently 
used [6] in the theory of sorption processes and which expresses an equilibrium relationship 
between the concentrations a and c - corresponding to retention of the first term of the sum 
in (3). Refinement of this approximation leads to Eq. (4), in which this term is kept. in 
this case, (4) becomes an elliptical equation [i] and must be augmented by additional condi- 
tions that address considerations of accuracy. 

The above-adopted form of kinetic relation (2) is not the only form possible [6,7]. 
For example, the variant in [7] can also be used: 

(1 - -  ~) Oa/Ot = kc  - -  g (a). (5) 

An expansion of type (3) becomes more complicated in the present situation, but if we limit 
ourselves to the first two terms in the expansion, we can similarly obtain the following 
equivalent equation: 

~C 
Oc + ( l - - e )  0 g _ l ( k c ) . j c t t  - - .  
ot ~ Ox 

. O~ i d a  ' +D 0 %  
i(~c) OXZ 

(6) 

where g-1 is the function which is the inverse of g and which is assumed to exist, it is 
easily proven that with linear functions f = kc and g = ka, we arrive at the well-known 
results in [i]. 

Equations (4)and (6) are valid only for sufficiently large values of time. Along with 
this shortcoming - due to the method by which the equations were derived - they suffer from 
certain inaccuracies inherent in kinetic relations of types (2) and (5) [2, 3]. This leads 
to different values for the coefficients of the expansions in the sums of Eq. (4), etc. 
These problems can be eliminated by taking a more detailed approach to the description of 
mass exchange between particles of the disperse phase and the dispersion medium. 

2. Formulation of Equations with Allowance for Relaxation Phenomena. in a numberof 
cases in which heat and mass transfer processes are being described, the condition that the 
parameter k and the function f(a) be independent of time is not fully acceptable [2, 3]. 
This is true especially in the case of "abrupt" disturbances of concentration, when the 
characteristic time of the process is comparable to the time of the interphase exchange re- 
laxation. As is known, two relaxation processes take place simultaneously in a heterogeneous 
disperse system: one in the dispersion medium, one in the disperse phase. The relationship 
between the corresponding relaxation times t I, t 2 and the characteristic time of the process 
is important for simplifying the problem. Here, we will restrict ourselves to analyzing the 
case when the inequality t I << t 2 is satisfied. This makes it possible to simply formulate 
the conditions required to close the problem for an isolated "sample" particle. For the 
other particles, we assume that the disperse system satisfies the usual postulates of the 
mechanics of heterogeneous media [2, 3, 8]. 

The equation of heat and mass transfer has been derived many times by different methods. 
For the dispersion medium, we take this equation in the form 

eSclSt  + uOc/Sx -~ Dc)2clOx 2 - -  Q, (7) 

where the term Q expresses the total flow of matter into (out of) the dispersion medium 
from the disperse phase per unit of time in a unit volume of the system, in (7), we omitted 
the term corresponding to puisative mass transfer [9]. This can be done for low values of 
the local Peciet number. Sometimes this component is incorporated into the diffusion term 
(7). in deriving (7) by averaging over the ensemble, the authors of [9] assumed that the 
composition of the spherical particles was monodisperse. However, it is clear that the form 
of the particles may remain the same in more general situations as well for the first terms 
of the equation. There may also be no change in the physical significance of the source 
term. We will give special emphasis to this subject below. 
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As was shown in [2, 3], under the condition t~ << t 2, the effect of the dispersion 
medium on heat and mass transfer in the neighborhood of the isolated particle is manifest 
in the imposition of the temperature (concentration) of the dispersion medium on the boundary 
of the particle. Here, changes in these quantities occurring over distances on the order of 
the size of the particle can be ignored. Thus, the temperature (concentration) can be as- 
sumed to depend only on time for the problem of heat and mass transfer inside the particle. 
The dependence on the macroscopic coordinate x is assumed to be parametric. When mass trans- 
fer processes occurring at a phase boundary are studied, investigators often make. use of a 
condition of local equilibrium of the Langmuir isotherm type. in this general case, this 
establishes a nonlinear relationship between the variables at the boundary, Taking this 
into account, we formulate the problem in the neighborhood of the isolated particle in the 
following form: 

A T =  O~/0x, �9 = t/t2, tz = lZ/D2, ( 8 )  

- ~ < " - = 0 ,  l = V  ~ / z  als = f ~ ) ~ ,  al~=0 , ( 9 )  

where  ~ i s  t h e  c h a r a c t e r i s t i c  d i m e n s i o n  o f  t h e  p a r t i c l e ;  S i s  i t s  b o u n d a r y .  Fo r  s i m p l i c i t y ,  
we adopt a zero initial condition, since its role is insignificant on the macroscopic time 
scale. 

The main quantities needed to complete the analysis and description of events are 
readily obtained from the results in [i0]: 

a - -  a '~ --  1 i' 5 d V =  - U  i' f [~ (~)1 * ~ d~, 

= il-Olz dl---- b t2 
d~. 

(10) 

For the function ~, we have the expansion: 

i = 1  

and, accordingly, for the Laplace transform of ~ (with regard to the parameter ~): 

* *  (p) = <~ v~/(1 + p/~.0, (i2) 
i=l 

where the asterisk denotes the transformed quantities; p is the parameter of the Laplace 
transform. Here, Ai are eizenvaiues of the problem 

( i 3 )  

f o r  t h e  i n t e r n a l  r e g i o n  bounded  a b o v e  by t h e  s u r f a c e  o f  t h e  p a r t i c l e .  The numbers  ~ i  a r e  t h e  
vo lume  i n t e g r a l s  o f  t h e  c o r r e s p o n d i n g  e i g e n f u n c t i o n s  0 i  n o r m a l i z e d  w i t h  r e s p e c t  t o  u n i t y .  

We will assume that all of the particles have the same shape but that their character- 
istic dimensions s are different. We introduce the particle-size distribution function ~(~). 
After this function is multiplied by ds it will give us the number of particles whose di- 
mensions fall within the interval [s ~ + d~] with small d~. 

Then calculation of the total mass flow from all of the particles in a unit volume and 
insertion of the result into Eq. (7) makes it possible to obtain the basic equation for the 
function c in the form 

0- ~ + .  0-v~ : D  - - 8)[! 0 , 
(i4) 
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where we have also used the definition of the porosity e of the layer. 

in the region of large values of time t >> t 2 (slight transience), we can use an expan- 
sion of the function ~* in powers of p [i0] to obtain the following relation: 

Oc + ( l _ e )  0 [(c)_[_tt Oc = D O z c  
o t  7 - 2  - -  

- -  D2 ( 1 - -  e) , 1 ~ ( _ l ) i n j _  1 Mes Oi f(c), 
M3 z_ i=2 D~ O~ 

(15)  

where 

o0 

Mj = ~ li~[~ (t) dt (16)  
0 

are the moments of the distribution function; nj are coefficients representing the volume- 
averaged values of the functions wj. These functions are determined from the sequence of 
probiems 

Awj : - - w j _ l ,  w0= I, ] :  1, 2, ... (17)  

f o r  t h e  r e g i o n  i n s i d e  t h e  p a r t i c l e  w i t h  a z e r o  v a l u e  f o r  t h e  f u n c t i o n  wj ,  j ~ i ,  on t h e  
boundary of the region. 

For small values of time - more accurately, for t I << t << t 2 - it is aiso possible to 
simplify the expression for the function ~. Using the results in [i0], we obtain the follow- 
ing equation: 

Oc Oc bZc (1-2-8)D~/2M~S, 0 / f[c(x, ~) ldg  D2(1--e) ~,S,MI[(c) ' ( i 8 )  
8 ---f[-- ~- u ~ = D Ox ~ M3 ~ Or ! ~ 2M3 

where S, is the proportionality factor in the expression for the area of the surface bound- 
ing a particle of the dimension s S = S.s K~.. is the analogous coefficient in the expres- 

;r i, 

sion for the mean curvature of the particle surface 

< • > = • = @ (19) 

Here, we assume that the particle surface is sufficiently smooth (see [i0] in regard to 
allowance for the presence of dihedral angles, etc. on the surface), it should be noted 
that by the curvature of the surface, the author of [i0] meant a quantity half as great 
as the quantity used here. 

As an example of the determination of the parameters S, and <, in (18), we will examine 
a particle of a bed in the form of an ellipsoid of revolution: 

za/b 2 + (x 2 + y2)/da : 1, t3 = 4~bd2/3" (20)  

Having d e s i g n a t e d  y = b / d  and p e r f o r m i n g  t h e  n e c e s s a r y  q u a d r a t u r e s ,  we a r r i v e  a t  t h e  f o l l o w -  
ing  r e l a t i o n s :  

V arcsin< I-- 1 ] 5 , - - - - 2 ~  1 + ] / y _ l  "l ' ( 2 1 )  

i I ] 
s, [ V -1 . 

The formulas for S, and K, obviously yield real values at y > i. it is easy to see that 
they are also valid at y < i. in this case, it is best to replace the inverse trigonometric 

1444 



functions by logarithmic functions and vice versa in accordance with established [ii] rela- 
tions, it should be noted that the point ~ = i (corresponding to a spherical particle) is 
not a singular point in Eqs. (21) and (22). The value of the first coefficients nj in (.15) 
was found in [i0] for this example. 

it is interesting to note that the given case is that of a particle whose geometric 
characteristics are completely determined by the two parameters ~ and ~. The description of 
the problem could be generalized by examining particles with two, three, or more parameters 
characterized by a certain scatter and by introducing distribution functions for the parti- 
cles in accordance with the corresponding number of variables. Although such a generaliza- 
tion would not complicate the basic problem being studied, the functions S, and K, in (18) 
would depend on the parameters analogous to ~ [see (21-22), for example] and would be 
located under the integral sign for these parameters in the final formula. 

One interesting feature of Eqs. (15) and (16) is that they contain only "moment" 
characteristics of the distribution function ~(~). Meanwhile, if the customary procedure 
is followed and one term of the sum is kept in (15), then it will be sufficient to know the 
moments Mj up to the fifth moment, inclusively. Production processes are often organized 
so as to consist of several specific stages (operations). Thus, equations such as (14), 
(15), and (18) are used to describe the removal of undesirable impurities from the end 
product (crystals). Previously, crystals were usually obtained in crystallizers, with the 
liquid phase subsequently being removed in filters or centrifuges. Moment characteristics 
of the distribution functions were also used in this case to model the process, in describ- 
ing the crystallization operation, it often turns out to be quite difficult to obtain com- 
plete information on the size distribution of the crystals. However, anumber of crystalliza- 
tion models make it possible to use the less informative but simpler "moment" approach [12, 
13, etc.]. Thus, if the problem being examined here is addressed with consideration of the 
corresponding stages of the production process, then it becomes clear that the "tightening" 
of the requirements established for the description of the crystallization process in accor- 

"16" dance with models (i5) and ( ) may prove to be a useful simplification of the modeling of 
the entire production cycle and may make it easier to attain given optimization targets and 
other production goals. 

The changeover from Eq. (14) to Eqs. (15) and (18) presupposes that it is valid to 
regard the corresponding asymptotic stage as realized for ail particles of the bed. This 
can always be achieved if the granuiometric composition of the particles is bounded from 
above (which it always is) and below: s ~ ~ ~ ~+. Then the necessary inequalities will 
be satisfied immediately for the entire particie spectrum for certain time intervals. For 
example, the inequalities will be satisfied at t >> t~ = s 2 in the case of Eq. (15). 

P . . T z 

Similar aspects ol the problem were discussed in [14]. This and other studies (such as [15, 
16]) examined adsorption in bidisperse porous structures, along with other topics. Both the 
mathematical and the physical features of the problems investigated in these studies turn 
out to be similar to the analogous features of our problem. For example, the authors of 
[15] presented expressions for functions ~ corresponding to certain particles of simple 
form. Dealing with the quasisteady case (t >> t2) , the authors of [14, 17] proposed a 
changeover to a system of equations of the type (1-2). Here, the function ~* for a sphere, 
of the form (pC~-thC~-l)/p, is replaced by a simple fraction with expansion of the hyperbolic 
functions of the numerator and denominator into Taylor series with small values of p. A 
more exact expression in the form of a simple fraction is obtained if we first exapnd ~* 
into a series in powers of p to terms on the order of O(p 2) and then replace the last ex- 
pression by a fraction with the same degree of accuracy, in the general case, we have the 
expression 

(I)* (p) = 1/(i q-n~p)  q - O ( P ~ ) ,  

which with the aid of (i0) leads us to a relation of type (2): 

nl t~Oa/at  = f (c) - -  a 
(23) 

for a monodisperse bed or 

( n l M s / M ~ D 2 )  Oa/at  = f (c) - -  a (24) 
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for a poiydisperse system. Here, the quantity a corresponds to the concentration of the end 
product in the particles within a unit volume of the solid phase. Having made the corre- 
sponding transformations, it is not hard to reduce Eqs. (23) and (24) to the form (2) - 
where the function f can be included as a constant coefficient if necessary. This was 
already taken into account in the formulation of boundary condition (9). 

The author of [14] proposed dividing the entire particle spectrum into two parts. The 
mass-transfer relations for small values of time are satisfied in the first part, while the 
analogous relations for large values of time are satisfied in the second part. it is clear 
that if the particle-size distribution function is not carefully chosen, there can be no 
clear boundary between these parts - even more so, since the location of the boundary may 
depend on time. if the particle spectrum is limited to 0 < s s < =, then in the general 
case, with a fixed time interval, the particles can be divided into three groups by adding 
an intermediate group in which mass transfer cannot be described by either of the above- 
mentioned asymptotic stages. The question of the efficacy of simplifying the kernel 
arises in this case. At attempt could be made to keep several initial terms in expansion 
(ii). However, it would be better to first make use of Eq. (12) for ~* and the fact that 
the intermediate stage corresponds to moderate values of time and, thus, intermediate values 
of the parameter p. Under such circumstances, the successful approximation of #* in ~the 
time interval of interest to us depends on the rate of decrease in ~i and rate of increase 
in ii with an increase in the number i, i.e., it is determined by i rather than p, as was 
the case earlier at t + ~ and t + 0. We have the corresponding theorems in [18] to evaluate 
the increase in ii with i. The use Of the simple example of spherical particles [i0, 15] 
shows that the rate of decrease in the terms of series (12) will be on the order of i -2, 
i.e., the convergence is not very good. in this case, we can use the methods available for 
accelerating the convergence of series [19]. This allows us to obtain the following ex- 
pression, for example: 

i = 1  

the terms of the sum of this expression decreasing as i -~ with i in the case of spherical 
particles. This procedure can obviously be continued further, in the given case, the first 
term of the sum may be sufficient for describing the intermediate time interval. Let us 
pursue this and for the sake of simplicity assume that the given stage is realized for the 
entire particle spectrum (this is not a fundamental change and means only that there is a 

change in the limits of integration over s in Eq. (25) and that a correction is thus made 
to certain moments (16)). We therefore obtain the following simplified equation (instead 
of (14)): 

Oc '+( l__e )  0 Oc = D  02c + 
8 0 t  --0[- [ (c) + u Ox Ox 2 

_.1_ (1 '--  ~) nlM5 0 z (1 - -  e) 7~ 03 
D~M3 Ot a f (c) ~ID~M~ Ot ~ • ( 2 5 )  

, . [ ] • .I f [c (x, ~)] d~ ] 15. (l) exp (t - -  ~) D2~1 
0 0 

it should be noted that representation of 0 as the sum of exponents (ii) might prove 
useful for specific distribution functions ~(s since it leads to one type of integral over 
s The form of this integral, shown in (25), permits its analytic or asymptotic investiga- 
tion, depending on the specific situation, it should also be noted that in the case of a 
monodisperse bed, 9(s = N6(s163 where 6(z) is the delta function and N is the number of 
particles of the size s Eq. (25) can be localized (i.e. reduced to a form not involving 
integral operations) by making use of the fact that the kernel has the form of an exponent 
and differentiating (25) can be carried out with respect to t, etc. 

Conclusion. it should also be noted that the proposed equations can be also be used 
to analyze several other processes, such as the filtration of flows in cracked-porous rocks 
(media with dual porosity). This and other mathematically similar systems are characterized 
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by the existence of linear relations between the sought functions at the phase boundaries, 
etc. Nonlinear effects are often due to factors other than those investigated here (see 
[20], for example). Thus, within the framework of the subject matter of the present study, 
the use of size distribution functions for particles (blocks, etc.) is of generalizing value. 
The author of [21] examined oniy the simplest variants for the form of filtration blocks in 
an analysis of relaxation phenomena, in practical situations, this approach may turn out to 
be too idealized. 

T--~e practical value of the questions examined here lies not only in modeling certain 
unit operations (adsorption, washing of sediments, etc.), but also in finding parameters 
which describe various phenomena and which may be encountered in the formulation of problems 
for other stages of the complete production cycle. This makes it possible to determine the 
degree of detail with which the corresponding processes need to be described, which may in 
turn make it possible to simplify the modeling of the production cycle as a whole (to discuss 
the relationship between the operations of crystallization and sediment washing, for exampi~. 

NOTATION 

a, a, concentrations of the end product in the disperse phase (average and local values, 
respectively); c, concentration of the component in the dispersion medium; D, coefficient of 
effective diffusion in the dispersion medium; D2, coefficient of diffusion in particles of 
the disperse phase; f(c), g(a), functions linking the concentrations of the components of 
the phases at equilibrium; k, proportionality factor; s177 largest and smallest particle size 
in the spectrum; q, dimensionless mass flux per particle; t, time; u, transport (filtration) 
rate; V, particle volume; x, coordinate along the system; < >, averaging sign. 
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